
V2. Editing
    All ViewIt windows can be edited from within a running program by pressing Option-âŒ˜-
Shift to enter ViewIt's editing mode.    The following notes describe how the content of ViewIt 
windows is organized into "views" and "controls", the corresponding resource types, and 
ViewIt's built-in support for on-line editing of these resources.

Windows/Views/Controls
    A ViewIt window can contain any number of "views", and any number of "controls" within 
each of these views.    This produces a hierarchy of window, view, and control objects within 
programs that open ViewIt windows:
    Window #1
      View #1
        Control #1
        Control #2
        ...
      View #2
        Control #1
        Control #2
        ...
      ...
    Window #2
      View #1
        Control #1
        ...
      ...
    ...
This hierarchy defines the order in which controls and views are drawn, and the numbering 
scheme that we make use of to identify controls.    A control's item number is the number of 
the control in the control list without regard to the distinction between views and controls 
(like the item numbers in standard dialogs), its view number is the number of the view 
containing the control, and its control number is the number of the control in that view.    
Thus the control containing this help text can be referred to as "control 13 in view 1" or 
simply "v1c13".
    Technically, a ViewIt "control" is a typical Mac control item (i.e., check box, radio button, 
etc.) that belongs to a particular view, and a ViewIt "view" is a special type of rectangular 
control that contains other controls.    Since a view is just a special type of control, we 
sometimes use the term "controls" when referring to both the controls and views in a 
window.
    ViewIt controls can be as simple as standard buttons and check boxes, or as complex as 
fully-functional text editors which contain their own private controls and other parts (such as
the help control displaying this text).    FaceWare distributes several advanced controls that 
can be purchased separately (see flier or vDemoXY program for more info).

Editing Resources
    Windows, views, and controls have a 1:1 correspondence with special resource types 
supported by ViewIt:    FWND, FVEW, and FCTL resources.    One FWND is used to open and 
save a ViewIt window, one FVEW is created when copying a view, and one FCTL is created 
when copying a control.    Thus ViewIt's edit mode can be thought of as an FWND, FVEW, and
FCTL resource editor.    Other resource editing not supported by ViewIt can be done with 
ResEdit.
    Any new resources created by ViewIt are always added to the "default" resource file (= the
file containing LoadIt).    ViewIt limits editing of resources in this file while running your 
program since it is dangerous to remove or renumber resources that are in use by windows 
and controls.    It does, however, support the editing of resources in any other file which is 
not open at the time you entered edit mode (see the "Open Res File" menu item discussed 
below).    This feature can be used to import resources from other files, and/or for building 



libraries of often-used resources.

Selecting Controls
    Most editing operations first require the selection of a control or view control in the window
being edited.    Typical operations such as clicking and shift-clicking to select, deselect, or 
extend selections work largely as expected.    One important difference you'll find is that a 
view and a control cannot be selected at the same time, and that the movement, deletion, 
copying, or duplication of a view also affects all of the controls within it.
    To help with the selection of multiple controls in the same view, ViewIt supports SHIFT-
DRAGGING across controls.    As the mouse is dragged, a lasso cursor appears and outlines 
the region in which controls are to be selected.
    The TAB key can be used to select the next visible control in the control list, and SHIFT-TAB 
to select the previous visible control.
    Finally, a quick way to deselect all controls is to click in the drag area of the bar at the 
bottom of the window.    This is useful, for example, when a view fills the entire window and 
there is no place to click without selecting something.

The Controls Bar
    A ViewIt window with many views and controls would be confusing to work with if there 
was no way to quickly find, select, and reorder controls.    This functionality is provided by 
the "controls bar" at the right of a ViewIt window being edited.    This bar shows a "pile" of 
controls.    The controls shown are either the view controls (if a view or no control is 
selected), or the controls within the view which contains the currently selected control.    The 
horizontal arrows at the bottom of the bar allow you to quickly flip through all of the views 
and controls within the window.
    Controls can be selected in the bar using the same methods supported in the content area
of the window (including shift-drag).    The bar can also be used to reorder controls in the 
window by simply dragging one or more controls in the bar up or down to new locations.    
Another use for the bar is in finding and showing controls or views that are hidden.

The Icon Menu Bar
    The icon bar displayed at the bottom of a window being edited has the sort of functionality
expected from a typical dialog or window resource editor.    It also contains a drag region (to 
the right of the icons) which can be used to drag any window to a new location (even if it 
doesn't have a title bar).    The drag region also serves as a status bar, showing information 
about either the control that the cursor is currently above, or the currently selected control if
the cursor is located outside the content area of the window.

• File Menu    (file icon)
Glossary    Glossary of commonly used terms.
ViewIt Help    Opens main ViewIt on-line help window.
Driver Help    Opens the control driver's help window.
Save All to disk    Saves updated FWND to disk.    All changes made to a window are 
temporarily stored in the FWND in memory until this item is chosen to force the FWND to 
disk.
Revert from disk    Replaces the contents of the window and the FWND in memory with the 
FWND last saved to disk.
Edit Another    Edits another FWND resource. This makes it possible for you to edit any other 
window, or even create completely new windows, from within ViewIt's edit mode.    The new 
windows are opened as "templates", meaning that they have no interaction with program 
code and only serve to update the corresponding FWND.    This mode is indicated by the 
presence of a "T" in the file icon.
Edit Options    Various editing options saved in FWND.
Quit Edit Mode    Shuts down ViewIt's editing mode.    You can also hit the ENTER or RETURN 



keys to do this.    The FWND in memory associated with the window is updated to reflect the 
current state of the window so that your changes will not be lost if the window is closed and 
later reopened.    The FWND on disk, however, is not updated unless "Save All to disk" is 
chosen (or the "Always Save All..." option is checked).

• Edit Menu    (scissors icon)
Undo Changes    Reverts window to state it was in when edit mode was entered.    This is 
accomplished by using the FWND in memory (rather than the disk copy used by "Revert").
Cut    Copies and clears the current selection.
Copy    Copies the current selection as an FCTL, FVEW, or FWND resource.
Paste    Pastes a resource into the window.    FWNDs replace the entire window contents.    
FVEWs and DITLs add a new view to the window (ViewIt also converts the DITL's items to 
controls and adds them to the view).    FCTLs and CNTLs add a new control to the top or 
currently selected view.    Views and controls are inserted after the current selection, giving 
you control over where the pasted items get placed in the control list.    Other resource types
can also be pasted if they correspond to the type of resource that is linked to the currently 
selected control.    NOTE:    When pasting a resource type that is linked to a control, the 
pasted resource simply replaces the linked resource data in memory, and is only saved to 
disk if "Save All to disk" is later chosen.
Paste Style    If the current clipboard contains an FVEW or FCTL resource, then the style 
information is extracted from that resource and used to reset the style of the currently 
selected view(s) or control(s).    The style settings updated correspond to those found in the 
Style menu.
Clear    Deletes the selected control(s) from the window.    The Delete key can also be used to 
clear items.
Select All    If a view control or no control is selected, then all views get selected.    If a control
within a view is selected, then all controls in that view get selected.
Duplicate    Creates a copy of the selected control(s) and inserts the new controls just after 
their parents in the control list.    COMMAND-DRAGGING can also be used to clone controls. 
The latter has the advantage of giving you control over where the new controls get placed in
the window.

• Import Menu    ("+" icon)
New Res File    Creates a new resource file on disk and opens the res editing dialog.    If a res 
file is already open, then this item is disabled and displays the name of the resource file.
Open Res File    Opens an existing resource file and displays its contents in the res editing 
dialog.    This item is changed to Edit Res File after a resource file is opened so that you can 
return to the dialog to do further editing.
Close Res File    Closes the last-opened resource file.
FWND    List of named FWNDs available in all open resource files.    Imported FWNDs replace 
the contents of the window.    (To edit an FWND without affecting the current window, use 
"Edit Another" described above.)
FVEW    List of named FVEWs available in all open resource files which can be imported as 
views.    View drivers are typically shipped with default FVEW resources that will 
automatically appear here after installing the driver.
FCTL    List of named FCTLs available in all open resource files that can be imported as 
controls.    Control drivers are typically shipped with default FCTLs that will automatically 
appear here after installing the driver.    NOTE:    The BaseCt driver includes an "Examples" 
topic in its on-line help that briefly describes each of its example controls.

• Info Menu    (window icon)
Window    Opens the "Window" dialog for resetting basic parameters that define the window's
behavior and type.
Shortcut:    Double-click in drag area at bottom of window.
Control    Opens the "Control" dialog for resetting basic parameters that define the control's 



behavior and type.
Shortcuts:    Triple-click the body or frame of the control, or double-click on a rounded 
rectangle in the controls bar, or double-click within the body of a view-type control.
Bounds    Opens the "Bounds" dialog for resetting variables used to define the selected 
control's bounds and frame.
Shortcut:    Double-click on control frame when selected.
Title    Opens the "Title" dialog for resetting the title and command key of the selected 
control (disabled for views).
Shortcut:    Double-click on control body when selected.
Lock Window Type    Prevents opening of the "Window" dialog for resetting basic window 
parameters.
Lock Control Order    Prevents the insertion, deletion, and reordering of controls in the 
window.
Lock Control Type    Prevents opening of the "Control" dialog for resetting basic control 
parameters.
Lock Control Position    Prevents dragging of the control.
Hide    Hides the selected control(s).    The controls bar at the right can be used to find and 
reshow any hidden controls.
Activate/Inactivate    Activates or inactivates the selected control(s).    Inactive controls are 
greyed and do not respond to events in the window.

• Style Menu    ("A" icon)
Font, Size, Style    Changes the control's text font, size, or style.    The exact effect depends 
on what the control driver does with this text style information.
Justify    Some controls support setting the justification of their contents.    The "System" 
option refers to the System's default justification which depends on the System script.
Colors    With System 7.0, Apple introduced the 15 standard control part colors seen in this 
menu. Many ViewIt controls only support coloring the "Frame", "Body" (background), and 
"Content" parts.    Choosing the "System" option resets the control's colors to Apple's default 
colors.    NOTE:    The standard CDEF controls from Apple have the "feature" of reusing the 
last defined part color for all other parts that are not assigned colors.    Thus setting just the 
"Frame" to red will cause the entire control to be drawn in red unless you take the trouble to 
also define other part colors.
Draw Solid Body    Enables drawing the control's background, otherwise the control will be 
"transparent".    Some controls ignore this flag and always draw solid bodies.
Use Global Hilite    Requests that the control make use of the System's hilite color instead of 
doing a simple inversion.    Many controls ignore this option.

• Align Menu
Center Horz...Align Top    Realigns a view within the window or a control within its view.
Bring To Front...Send Behind    Reorders control(s) in the window's control list.    The affected 
controls are redrawn and the controls bar is updated to show the new order.

• Grid Icon
The last icon in the icon bar shows the current "grid" size (1, 2, 4, or 8 pixels).    Clicking this 
icon flips the grid size to its next value.    Dragging of controls is then restricted to window 
locations which are multiples of the grid size.

Outline Mode
    Pressing CAPS LOCK while editing a ViewIt window puts the window into "outline mode" .    
This mode displays all controls as simple, black-and-white rectangles with basic control 
information shown in each rectangle:    a small icon indicating the control type, the control 
number, and the control title.    This mode provides a quick way to view the position, order, 
and type of all controls in a window.



Saving Changes
    If the "Always Save All..." option in "Edit Options" dialog is not checked, then changes 
made to ViewIt windows are not saved to disk until the File item "Save All to disk" is chosen.  
Thus, if the "Always Save All..." option is not checked, you must be careful to use "Save All 
to disk" when you wish to make changes permanent.
    Also note that changes made to resources loaded from the FaceWare file cannot be saved 
since the FaceWare file is always opened as "read only".    To make changes to FaceWare 
resources, simply move a copy of the resources to be edited from the FaceWare file to your 
program file or other res file used by your program.    The resources can be moved using 
either ResEdit or our MoveIt FCMD mover.

Getting Into Trouble
    Code that is used to manage a ViewIt window often makes assumptions about the position 
and type of controls in the window.    When editing such windows be careful to leave the 
window in a state that doesn't conflict with the code.    This usually means that you must be 
careful not to remove or reorder certain controls in the window, but can also apply to simply 
hiding and showing controls or views if the code assumes that certain controls or views are 
visible.
    One tricky aspect of ViewIt editing to be conscious of is the fact that ViewIt always updates
the FWND in memory when leaving editing mode.    This FWND in memory will then be used 
to open the next instance of that window, which might conflict with code if you happen to 
have left editing mode when the window contents were not arranged correctly.
    Suppose, for example, that you wished to copy the help view from one of ViewIt's built-in 
dialogs.    You would open the dialog, switch to the help view, enter edit mode, copy the help 
view, leave edit mode (which updates the FWND!), switch out of the help view, close the 
dialog, and paste the view into your window.    Everything appears fine until the dialog is 
opened again and you find that its help is displayed first!    The FWND in memory is now "out
of synch" with the code in ViewIt.
    One way to prevent problems like that just described is to write defensive code that 
always checks the state of controls and views when a window is opened.    This is usually a 
waste of time, however, since such problems do not affect users of your programs, and are 
easily fixed with a little window editing (hide the view that should be hidden, show the view 
that should be shown, etc.). In the case of the Control dialog, for example, we always close 
the help view after editing it, and then enter and leave editing mode one more time so that 
the FWND in memory isn't left "out of synch".


